Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Feb 19 2023 11:16:17
%S 0,1,0,-1,0,1,2,1,0,-1,-2,-1,-2,-1,0,-1,0,1,2,1,2,3,2,1,2,1,0,-1,-2,
%T -1,0,1,0,-1,-2,-3,-4,-3,-2,-3,-4,-3,-4,-3,-2,-3,-2,-1,-2,-1,0,-1,0,1,
%U 2,3,4,5,4,3,2,1,0,1,0,1,2,1,2,3,4,3,4,3,2,3,2,1
%N Partial sums of A360710.
%H Rémy Sigrist, <a href="/A360711/b360711.txt">Table of n, a(n) for n = 0..10000</a>
%H Rémy Sigrist, <a href="/A360711/a360711.png">Scatterplot of (log(n), sign(a(n))*log(1+abs(a(n)))) for n <= 2^24</a>
%F a(n) = Sum_{k = 1..n} A360710(k).
%e a(3) = A360710(1) + A360710(2) + A360710(3) = -1 - 1 + 1 = -1.
%o (PARI) { my (s=0, f); for (n=1, #a=vector(78), print1 (s", "); f=factor(n); s+=a[n]=if (#f~==1, if (s, -sign(s), a[n-1]), prod(k=1, #f~, a[f[k, 1]^f[k, 2]]))) }
%Y Cf. A360710.
%K sign,look
%O 0,7
%A _Rémy Sigrist_, Feb 17 2023