OFFSET
1,2
COMMENTS
Subset of A055932.
Conjecture: for n > 2, subset of A364702. - Michael De Vlieger, Oct 04 2024
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..2071
Michael De Vlieger, Plot p^m | a(n) at (x,y) = (n, pi(p)), n = 1..2071, 24X vertical exaggeration, with a color function that represents m = 1 in black, m = 2 in red, m = 3 in orange, ... m = 34 in magenta. (Represents column "A067255(a(n))" in table in Example below.)
EXAMPLE
Let rad(m) = A007947(m).
a(1) = 1 since 1 is the empty product.
a(2) = 18 since {12} is a nondivisor k < 18 such that rad(k) = rad(18).
a(3) = 48 since {18, 36} are nondivisors k < 48 such that rad(k) = rad(48).
a(4) = 54 since {12, 24, 36, 48} are nondivisors k < 54 such that rad(k) = rad(54), etc.
Table shows prime decomposition of a(n) = Product p^e, noting multiplicity e in the pi(p)-th position. For example, a(n) = 1350 = 2 * 3^3 * 5^2, hence we write 1.3.2.
----------------------------------------
1 1 0 1 0
2 18 1.2 8 1
3 48 4.1 13 2
4 54 1.3 14 4
5 162 1.4 25 8
6 384 7.1 37 10
7 486 1.5 42 14
8 1350 1.3.2 65 16
9 1458 1.6 67 21
10 2250 1.2.3 81 23
11 2430 1.5.1 85 26
12 3750 1.1.4 99 33
...
MATHEMATICA
rad[n_] := rad[n] = Times @@ FactorInteger[n][[All, 1]]; t = Select[Range[2^14], Nor[SquareFreeQ[#], PrimePowerQ[#]] &]; s = Select[t, #1/#2 >= #3 & @@ {#1, Times @@ #2, #2[[2]]} & @@ {#, FactorInteger[#][[All, 1]]} &]; t = Table[m = s[[n]]; r = rad[m]; Count[TakeWhile[t, # < m &], _?(And[rad[#] == r, Mod[m, #] != 0] &)], {n, Length[s]}]; {1}~Join~Map[s[[FirstPosition[t, #][[1]]]] &, Union@ FoldList[Max, t]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Feb 22 2023
STATUS
approved