login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360403
a(n) = A360393(A026430(n)).
4
1, 4, 9, 13, 19, 22, 24, 31, 36, 40, 42, 49, 51, 58, 64, 66, 73, 76, 78, 85, 87, 94, 99, 103, 106, 112, 117, 121, 126, 129, 133, 139, 144, 148, 150, 157, 159, 166, 171, 175, 178, 184, 189, 193, 199, 202, 204, 210, 213, 220, 225, 229, 235, 238, 240, 246, 253
OFFSET
1,2
COMMENTS
This is the second of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
(1) v o u, defined by (v o u)(n) = v(u(n));
(2) v' o u;
(3) v o u';
(4) v' o u.
Every positive integer is in exactly one of the four sequences. Their limiting densities are 4/9, 2/9, 2/9, 1/9, respectively (and likewise for A360394-A360401).
LINKS
EXAMPLE
(1) v o u = (3, 7, 10, 11, 14, 16, 17, 20, 23, 25, 26, 29, 30, 33, 37, ...) = A360402
(2) v' o u = (1, 4, 9, 13, 19, 22, 24, 31, 36, 40, 42, 49, 51, 58, 64, ...) = A360403
(3) v o u' = (5, 8, 12, 18, 21, 28, 32, 35, 39, 46, 50, 53, 59, 62, 67, ...) = A360404
(4) v' o u' = (2, 6, 15, 27, 34, 45, 55, 60, 69, 81, 91, 96, 108, 114, ...) = A360405
MATHEMATICA
z = 2000; zz = 100;
u = Accumulate[1 + ThueMorse /@ Range[0, 600]]; (* A026430 *)
u1 = Complement[Range[Max[u]], u]; (* A356133 *)
v = u + 2; (* A360392 *)
v1 = Complement[Range[Max[v]], v]; (* A360393 *)
Table[v[[u[[n]]]], {n, 1, zz}] (* A360402 *)
Table[v1[[u[[n]]]], {n, 1, zz} (* A360403 *)
Table[v[[u1[[n]]]], {n, 1, zz}] (* A360404 *)
Table[v1[[u1[[n]]]], {n, 1, zz}] (* A360405 *)
PROG
(Python)
def A360393(n):
if n < 3: return [0, 1, 2][n]
return 3*n - 5 - (n-3).bit_count() % 2
def A026430(n): return n+(n-1>>1)+(n-1&1|(n.bit_count()&1^1))
def A360403(n): return A360393(A026430(n)) # Winston de Greef, Mar 24 2023
CROSSREFS
Cf. A026530, A360392, A360393, A360394-A3546352 (intersections instead of results of compositions), A360398-A360401 (results of reversed compositions), A360402, A360404, A360405.
Sequence in context: A312964 A090498 A312965 * A312966 A312967 A312968
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 11 2023
STATUS
approved