login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360399
a(n) = A026430(1 + A360393(n)).
4
1, 3, 6, 9, 14, 19, 23, 28, 33, 36, 41, 46, 51, 54, 60, 63, 68, 73, 77, 82, 87, 90, 96, 99, 103, 109, 114, 117, 121, 128, 130, 136, 141, 144, 149, 154, 159, 162, 168, 171, 175, 181, 186, 189, 194, 199, 203, 209, 213, 216, 222, 225, 230, 235, 239, 245, 249
OFFSET
1,2
COMMENTS
This is the second of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
(1) u o v, defined by (u o v)(n) = u(v(n));
(2) u o v';
(3) u' o v;
(4) v' o u'.
Every positive integer is in exactly one of the four sequences. Their limiting densities are 4/9, 2/9, 2/9, 1/9 (and likewise for A360394-A360397 and A360402-A360405).
EXAMPLE
(1) u o v = (5, 8, 10, 12, 15, 16, 18, 21, 24, 26, 27, 30, 31, 35, 37, 39, ...) = A360398
(2) u o v' = (1, 3, 6, 9, 14, 19, 23, 28, 33, 36, 41, 46, 51, 54, 60, 63, 68, ...) = A360399
(3) u' o v = (7, 13, 20, 22, 29, 32, 34, 40, 47, 49, 53, 58, 62, 67, 74, 76, ...) = A360400
(4) u' o v' = (2, 4, 11, 17, 25, 38, 43, 56, 64, 71, 79, 92, 101, 106, 119, ...) = A360401
MATHEMATICA
z = 2000;
u = Accumulate[1 + ThueMorse /@ Range[0, 600]]; (* A026430 *)
u1 = Complement[Range[Max[u]], u]; (* A356133 *)
v = u + 2; (* A360392 *)
v1 = Complement[Range[Max[v]], v]; (* A360393 *)
zz = 100;
Table[u[[v[[n]]]], {n, 1, zz}] (* A360398 *)
Table[u[[v1[[n]]]], {n, 1, zz}] (* A360399 *)
Table[u1[[v[[n]]]], {n, 1, zz}] (* A360400 *)
Table[u1[[v1[[n]]]], {n, 1, zz}] (* A360401 *)
CROSSREFS
Cf. A026530, A356133, A360392, A360393, A360398, A286355, A286356, A360394 (intersections instead of results of composition), A360402-A360405.
Sequence in context: A310165 A310166 A310167 * A310168 A134031 A228172
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 10 2023
STATUS
approved