login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360187
Generalized Somos-5 sequence with a(n) = (-a(n-1)*a(n-4) + 42*a(n-2)*a(n-3))/a(n-5), a(-n) = a(n), a(0) = a(1) = 1, a(2) = 3.
1
1, 1, 3, 13, 113, 1525, 57123, 2165017, 262621633, 42422452969, 14070212996451, 7658246457672229, 10650393355715621873, 15512114571284835412957, 75606222210863532170808003, 452005526897888844293504165425
OFFSET
0,3
COMMENTS
The elliptic curve y^2 = x^3 - 2*x (LMFDB label 256.b1) has infinite order point P = (2, 2) and 2-torsion point T = (0, 0). The x and y coordinates of n*P + T have denominators a(n)^2 and a(n)^3 respectively.
FORMULA
a(2*n-1) = A166929(n) for all n in Z.
EXAMPLE
2*P + T = (-8/9, -28/27). 3*P + T = (-1/169, 239/2197).
MATHEMATICA
a[ m_] := With[{n = Abs[m]}, If[ n<3, {1, 1, 3}[[n+1]], (-a[n-1]*a[n-4] + 42*a[n-2]*a[n-3])/a[n-5]]];
PROG
(PARI) {a(n) = my(E = ellinit([-2, 0])); sqrtint(denominator(elladd(E, [0, 0], ellmul(E, [2, 2], n))[1]))};
(PARI) {a(n) = my(A); n = abs(n); A = vector(max(4, n+1), k, 1); A[3] = 3; A[4] = 13; for(k = 4, n, A[k+1] = (if(k%2, 4, 8)*A[k]*A[k-2] + A[k-1]^2)/A[k-3]); A[n+1]};
CROSSREFS
Cf. A166929.
Sequence in context: A090537 A063269 A105431 * A053583 A077713 A119723
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 29 2023
STATUS
approved