login
Generalized Somos-5 sequence with a(n) = (-a(n-1)*a(n-4) + 42*a(n-2)*a(n-3))/a(n-5), a(-n) = a(n), a(0) = a(1) = 1, a(2) = 3.
1

%I #5 Jan 29 2023 10:16:24

%S 1,1,3,13,113,1525,57123,2165017,262621633,42422452969,14070212996451,

%T 7658246457672229,10650393355715621873,15512114571284835412957,

%U 75606222210863532170808003,452005526897888844293504165425

%N Generalized Somos-5 sequence with a(n) = (-a(n-1)*a(n-4) + 42*a(n-2)*a(n-3))/a(n-5), a(-n) = a(n), a(0) = a(1) = 1, a(2) = 3.

%C The elliptic curve y^2 = x^3 - 2*x (LMFDB label 256.b1) has infinite order point P = (2, 2) and 2-torsion point T = (0, 0). The x and y coordinates of n*P + T have denominators a(n)^2 and a(n)^3 respectively.

%H LMFDB, <a href="https://www.lmfdb.org/EllipticCurve/Q/256/b/1">Elliptic Curve 256.b1 (Cremona label 256b1)</a>

%F a(2*n-1) = A166929(n) for all n in Z.

%e 2*P + T = (-8/9, -28/27). 3*P + T = (-1/169, 239/2197).

%t a[ m_] := With[{n = Abs[m]}, If[ n<3, {1, 1, 3}[[n+1]], (-a[n-1]*a[n-4] + 42*a[n-2]*a[n-3])/a[n-5]]];

%o (PARI) {a(n) = my(E = ellinit([-2, 0])); sqrtint(denominator(elladd(E, [0, 0], ellmul(E, [2, 2], n))[1]))};

%o (PARI) {a(n) = my(A); n = abs(n); A = vector(max(4, n+1), k, 1); A[3] = 3; A[4] = 13; for(k = 4, n, A[k+1] = (if(k%2, 4, 8)*A[k]*A[k-2] + A[k-1]^2)/A[k-3]); A[n+1]};

%Y Cf. A166929.

%K nonn

%O 0,3

%A _Michael Somos_, Jan 29 2023