login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360049
a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(n+2,3*k+2) * Catalan(k).
5
1, 3, 6, 9, 9, 0, -26, -72, -117, -82, 204, 975, 2289, 3357, 1332, -9834, -37935, -82593, -108282, 2583, 487521, 1621071, 3261546, 3685230, -2318615, -24607854, -72887472, -134909701, -123941901, 200330184, 1258932996, 3377359872, 5706502677, 3797618237
OFFSET
0,2
LINKS
FORMULA
a(n) = binomial(n+2,2) - Sum_{k=0..n-3} a(k) * a(n-k-3).
G.f. A(x) satisfies: A(x) = 1/(1-x)^3 - x^3 * A(x)^2.
G.f.: 2 / ( (1-x) * ((1-x)^2 + sqrt((1-x)^4 + 4*x^3*(1-x))) ).
D-finite with recurrence (n+3)*a(n) +4*(-n-2)*a(n-1) +6*(n+1)*a(n-2) -6*a(n-3) +3*(-n+1)*a(n-4)=0. - R. J. Mathar, Jan 25 2023
MATHEMATICA
Table[Sum[(-1)^k Binomial[n+2, 3k+2]CatalanNumber[k], {k, 0, Floor[n/3]}], {n, 0, 40}] (* Harvey P. Dale, Nov 21 2023 *)
PROG
(PARI) a(n) = sum(k=0, n\3, (-1)^k*binomial(n+2, 3*k+2)*binomial(2*k, k)/(k+1));
(PARI) my(N=40, x='x+O('x^N)); Vec(2/((1-x)*((1-x)^2+sqrt((1-x)^4+4*x^3*(1-x)))))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jan 23 2023
STATUS
approved