OFFSET
0,2
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = binomial(n+2,2) - Sum_{k=0..n-3} a(k) * a(n-k-3).
G.f. A(x) satisfies: A(x) = 1/(1-x)^3 - x^3 * A(x)^2.
G.f.: 2 / ( (1-x) * ((1-x)^2 + sqrt((1-x)^4 + 4*x^3*(1-x))) ).
D-finite with recurrence (n+3)*a(n) +4*(-n-2)*a(n-1) +6*(n+1)*a(n-2) -6*a(n-3) +3*(-n+1)*a(n-4)=0. - R. J. Mathar, Jan 25 2023
MATHEMATICA
Table[Sum[(-1)^k Binomial[n+2, 3k+2]CatalanNumber[k], {k, 0, Floor[n/3]}], {n, 0, 40}] (* Harvey P. Dale, Nov 21 2023 *)
PROG
(PARI) a(n) = sum(k=0, n\3, (-1)^k*binomial(n+2, 3*k+2)*binomial(2*k, k)/(k+1));
(PARI) my(N=40, x='x+O('x^N)); Vec(2/((1-x)*((1-x)^2+sqrt((1-x)^4+4*x^3*(1-x)))))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jan 23 2023
STATUS
approved