login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359960
Smallest Niven (or Harshad) number (A005349) with exactly n distinct prime factors.
3
1, 2, 6, 30, 210, 2310, 30030, 690690, 14804790, 223092870, 8254436190, 200560490130, 8222980095330, 304250263527210, 13082761331670030, 614889782588491410, 32589158477190044730, 1987938667108592728530, 117288381359406970983270, 7858321551080267055879090
OFFSET
0,2
COMMENTS
a(11) = 200560490130; a(13) = 304250263527210.
a(n) >= A002110(n) = prime(n)#.
Many terms are primorial numbers, see A360011.
LINKS
Giovanni Resta, Harshad numbers.
Eric Weisstein's World of Mathematics, Distinct Prime Factors.
EXAMPLE
2310 = 2*3*5*7*11 is the smallest integer with 5 prime factors because it is a primorial number, as 2310 / (2+3+1+0) = 385, 2310 is a Niven number: a(5) = 2310.
PROG
(PARI) a(n) = my(k=1); while ((k % sumdigits(k)) || (omega(k) != n), k++); k; \\ Michel Marcus, Jan 20 2023
(PARI)
omega_niven(A, B, n) = A=max(A, vecprod(primes(n))); (f(m, p, j) = my(list=List()); forprime(q=p, sqrtnint(B\m, j), my(v=m*q, r=nextprime(q+1)); while(v <= B, if(j==1, if(v>=A && v%sumdigits(v) == 0, listput(list, v)), if(v*r <= B, list=concat(list, f(v, r, j-1)))); v *= q)); list); vecsort(Vec(f(1, 2, n)));
a(n) = if(n==0, return(1)); my(x=vecprod(primes(n)), y=2*x); while(1, my(v=omega_niven(x, y, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Jan 22 2023
CROSSREFS
Similar: A060319 (Fibonacci), A083002 (oblong), A359961 (Zuckerman).
Sequence in context: A002110 A118491 A376237 * A088257 A058694 A336672
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Jan 20 2023
EXTENSIONS
a(8)-a(9) from Michel Marcus, Jan 20 2023
a(10)-a(19) from Daniel Suteu, Jan 22 2023
STATUS
approved