login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359948
Lexicographically earliest sequence of primes whose partial products lie between noncomposite numbers.
2
2, 2, 3, 5, 3, 13, 5, 7, 41, 13, 83, 109, 347, 337, 127, 67, 379, 499, 739, 4243, 2311, 1973, 5827, 7333, 971, 3449, 3967, 3407, 12671, 1423, 859, 20641, 7237, 769, 9209, 281, 12919, 16633, 11383, 30449, 6733, 40627, 34591, 1103, 14303, 5479, 4603, 17477, 5113, 51001, 36299, 57037, 1153, 34297, 1237
OFFSET
1,1
COMMENTS
Are there any repeated terms other than a(1) = a(2) = 2, a(3) = a(5) = 3, a(4) = a(7) = 5 and a(6) = a(10) = 13?
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..160
EXAMPLE
2 - 1 = 1 and 2 + 1 = 3 are both noncomposites.
2*2 - 1 = 3 and 2*2 + 1 = 5 are both primes.
2*2*3 - 1 = 11 and 2*2*3 + 1 = 13 are both primes.
2*2*3*5 - 1 = 59 and 2*2*3*5 + 1 = 61 are both primes.
MAPLE
R:= 2: s:= 2:
for i from 2 to 60 do
p:= 1:
do
p:= nextprime(p);
if isprime(p*s-1) and isprime(p*s+1) then R:= R, p; s:= p*s; break fi;
od od:
R;
MATHEMATICA
a[1] = 2; a[n_] := a[n] = Module[{r = Product[a[k], {k, 1, n - 1}], p = 2}, While[! PrimeQ[r*p - 1] || ! PrimeQ[r*p + 1], p = NextPrime[p]]; p]; Array[a, 55] (* Amiram Eldar, Jan 19 2023 *)
PROG
(Python)
from itertools import islice
from sympy import isprime, nextprime
def agen(): # generator of terms
s = 2; yield 2
while True:
p = 2
while True:
if isprime(s*p-1) and isprime(s*p+1):
yield p; s *= p; break
p = nextprime(p)
print(list(islice(agen(), 55))) # Michael S. Branicky, Jan 19 2023
CROSSREFS
Sequence in context: A299995 A113167 A036014 * A289507 A076228 A317050
KEYWORD
nonn
AUTHOR
Robert Israel, Jan 19 2023
STATUS
approved