login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359938
Number of divisors d of n such that d-1 is square.
0
1, 2, 1, 2, 2, 2, 1, 2, 1, 4, 1, 2, 1, 2, 2, 2, 2, 2, 1, 4, 1, 2, 1, 2, 2, 3, 1, 2, 1, 4, 1, 2, 1, 3, 2, 2, 2, 2, 1, 4, 1, 2, 1, 2, 2, 2, 1, 2, 1, 5, 2, 3, 1, 2, 2, 2, 1, 2, 1, 4, 1, 2, 1, 2, 3, 2, 1, 3, 1, 4, 1, 2, 1, 3, 2, 2, 1, 3, 1, 4, 1, 3, 1, 2, 3, 2, 1, 2, 1, 4
OFFSET
1,2
COMMENTS
The Cartesian equation for the Witch of Agnesi is given as y = 8*k^3/(x^2+4*k^2). If we set x = n, then a(n)-1 is the number of positive integer solutions in k such that y is a positive integer. Let d = m^2+1 be a divisor of n, then k = m*n/2 is a solution. - Thomas Scheuerle, Aug 07 2024
FORMULA
G.f.: Sum_{k>=0} x^(k^2+1)/(1 - x^(k^2+1)).
From Vaclav Kotesovec, Jan 19 2023: (Start)
a(n) = Sum_{k=0..n} (floor(n/(k^2 + 1)) - floor((n-1)/(k^2 + 1))).
Sum_{k=1..n} a(k) = Sum_{k=0..n} floor(n/(k^2 + 1)).
Sum_{k=1..n} a(k) ~ c*n, where c = A113319 = (1 + Pi*coth(Pi))/2 = 2.0766... (End)
MATHEMATICA
nmax = 100; Rest[CoefficientList[Series[Sum[x^(k^2 + 1)/(1 - x^(k^2 + 1)), {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jan 19 2023 *)
Table[Sum[Floor[n/(k^2 + 1)] - Floor[(n-1)/(k^2 + 1)], {k, 0, Sqrt[n]}], {n, 1, 100}] (* Vaclav Kotesovec, Jan 19 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, issquare(d-1));
(PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=0, sqrtint(N), x^(k^2+1)/(1-x^(k^2+1))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 19 2023
STATUS
approved