login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A359842
a(n) = Sum_{k=0..n} binomial(n*k,n+k).
2
1, 0, 1, 90, 13690, 3443275, 1308315371, 701623884514, 505274768721332, 470638793249281593, 550707386335951810915, 790898932162231992184327, 1367864138835420575101044139, 2804370191530797723173615407860, 6725366044028696102055907486691290
OFFSET
0,4
LINKS
FORMULA
a(n) ~ binomial(n^2,2*n).
a(n) ~ exp(2*n-2) * n^(2*n - 1/2) / (sqrt(Pi) * 2^(2*n+1)).
From Peter Bala, Jan 19 2023: (Start)
Conjectures: a(2^k) == 0 (mod 2^(k-1)) and a(3^k) == 0 (mod 3^(k+2)) for k >= 2; a(p^k) == 0 (mod p^(k+1)) for all primes p >= 5.
Let m be a positive integer. Similar recurrences may hold for the sequence whose n-th term is given by Sum_{k = 0..n} binomial(m*n*k, n+k). Cf. A099237. (End)
MAPLE
a := proc (n) option remember; add(binomial(n*k, n+k), k = 0..n) end:
seq(a(n), n = 0..20); # Peter Bala, Jan 16 2023
MATHEMATICA
Table[Sum[Binomial[n*k, n+k], {k, 0, n}], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jan 15 2023
STATUS
approved