login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359811
a(n) = Sum_{d|n} 2^(d-1) * d^(n/d-1).
2
1, 3, 5, 13, 17, 53, 65, 177, 293, 625, 1025, 2541, 4097, 8769, 17109, 34561, 65537, 136013, 262145, 534481, 1054629, 2110465, 4194305, 8449325, 16787217, 33615873, 67155845, 134403521, 268435457, 537370845, 1073741825, 2148270081, 4295327397, 8591179777
OFFSET
1,2
FORMULA
G.f.: Sum_{k>0} 2^(k-1) * x^k / (1 - k * x^k).
If p is prime, a(p) = 1 + 2^(p-1).
a(n) ~ 2^(n-1). - Vaclav Kotesovec, Jan 14 2023
MATHEMATICA
Table[Sum[2^(d-1) * d^(n/d - 1), {d, Divisors[n]}], {n, 1, 40}] (* Vaclav Kotesovec, Jan 14 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, 2^(d-1)*d^(n/d-1));
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, 2^(k-1)*x^k/(1-k*x^k)))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jan 14 2023
STATUS
approved