login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359750
Numbers that are a product of one or more factorials j!, j >= 2, in at least two ways.
1
24, 48, 96, 144, 192, 288, 384, 576, 720, 768, 864, 1152, 1440, 1536, 1728, 2304, 2880, 3072, 3456, 4320, 4608, 5184, 5760, 6144, 6912, 8640, 9216, 10368, 11520, 12288, 13824, 17280, 18432, 20736, 23040, 24576, 25920, 27648, 31104, 34560, 36864, 40320, 41472, 46080
OFFSET
1,1
EXAMPLE
24 = 2! * 3! = 4!.
144 = (2!)^2 * (3!)^2 = 3! * 4!.
PROG
(PARI) is(n) = { if(n == 1, return(0)); my(i, factorials, e, res, v); f = factor(n); if(prime(#f~) != f[#f~, 1], return(0); ); if(f[, 2] != vecsort(f[, 2], , 4), return(0); ); factorials = List(); e = List(); res = List(); for(i = 2, oo, v = valuation(n, i!); if(v > 0, listput(factorials, i!); listput(e, v); , break ) ); forvec(x = vector(#e-1, i, [0, e[i+1]]), c = prod(i = 1, #e-1, factorials[i+1]^x[i]); if(c <= n && denominator(n/c) == 1&& 1 << logint(n/c, 2) == n/c, listput(res, concat([valuation(n/c, 2)], x)) ) ); #res >= 2 } \\ David A. Corneth, Jan 13 2023
CROSSREFS
Cf. A001013.
Sequence in context: A083541 A230761 A073763 * A292834 A362941 A030021
KEYWORD
nonn
AUTHOR
David A. Corneth, Jan 13 2023
STATUS
approved