login
A359666
Integers k such that sigma(k) <= sigma(k+1) <= sigma(k+2) <= sigma(k+3), where sigma is the sum of divisors.
1
1, 13, 61, 73, 133, 145, 193, 205, 253, 397, 457, 481, 493, 553, 565, 613, 625, 661, 673, 733, 757, 793, 817, 853, 913, 973, 997, 1033, 1093, 1213, 1237, 1285, 1321, 1333, 1453, 1513, 1537, 1633, 1645, 1657, 1681, 1813, 1825, 1873, 1933, 2077, 2113, 2173, 2233, 2245, 2293, 2413, 2497
OFFSET
1,2
LINKS
EXAMPLE
73 is a term because sigma(73)=74 <= sigma(74)=114 <= sigma(75)=124 <= sigma(76)=140.
MATHEMATICA
Position[OrderedQ /@ Partition[DivisorSigma[1, Range[2500]], 4, 1], True] // Flatten (* Amiram Eldar, Feb 28 2023 *)
PROG
(PARI) isok(n)=sigma(n)<=sigma(n+1) && sigma(n+1)<=sigma(n+2) && sigma(n+2)<=sigma(n+3)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alexandru Petrescu, Feb 28 2023
STATUS
approved