%I #7 Jan 07 2023 13:05:26
%S 0,1,2,3,4,5,7,8,9,10,11,12,13,15,16,17,19,21,23,25,27,29,31,32,33,34,
%T 35,37,39,42,43,47,48,49,51,53,55,59,63,64,65,67,68,69,71,76,77,79,80,
%U 81,83,85,87,93,95,112,113,115,117,119,127,128,129,130,131
%N Nonnegative numbers k such that if 2^i and 2^j appear in the binary expansion of k, then 2^(i AND j) also appears in the binary expansion of k (where AND denotes the bitwise AND operator).
%C Equivalently, numbers whose binary expansions encode intersection-closed finite sets of finite sets of nonnegative integers:
%C - the encoding is based on a double application of A133457,
%C - for example: 11 -> {0, 1, 3} -> {{}, {0}, {0, 1}},
%C - an intersection-closed set f satisfies: for any i and j in f, the intersection of i and j belongs to f.
%C For any k >= 0, if 2*k belongs to the sequence then 2*k+1 belongs to the sequence.
%C This sequence has similarities with A190939; here we consider the bitwise AND operator, there the bitwise XOR operator.
%C This sequence is infinite as it contains the powers of 2.
%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%e The first terms, alongside the corresponding intersection-closed sets, are:
%e n a(n) Intersection-closed set
%e ---- ----- -----------------------
%e 0 0 {}
%e 1 1 {{}}
%e 2 2 {{0}}
%e 3 3 {{}, {0}}
%e 4 4 {{1}}
%e 5 5 {{}, {1}}
%e 6 7 {{}, {0}, {1}}
%e 7 8 {{0, 1}}
%e 8 9 {{}, {0, 1}}
%e 9 10 {{0}, {0, 1}}
%e 10 11 {{}, {0}, {0, 1}}
%e 11 12 {{1}, {0, 1}}
%e 12 13 {{}, {1}, {0, 1}}
%e 13 15 {{}, {0}, {1}, {0, 1}}
%e 14 16 {{2}}
%e 15 17 {{}, {2}}
%e 16 19 {{}, {0}, {2}}
%e 17 21 {{}, {1}, {2}}
%o (PARI) is(n) = { my (b=vector(hammingweight(n))); for (i=1, #b, n -= 2^b[i] = valuation(n,2)); setbinop(bitand, b)==b }
%Y Cf. A133457, A190939 (XOR analog), A359527 (OR analog).
%K nonn,base
%O 1,3
%A _Rémy Sigrist_, Jan 04 2023