login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359528
Nonnegative numbers k such that if 2^i and 2^j appear in the binary expansion of k, then 2^(i AND j) also appears in the binary expansion of k (where AND denotes the bitwise AND operator).
1
0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 33, 34, 35, 37, 39, 42, 43, 47, 48, 49, 51, 53, 55, 59, 63, 64, 65, 67, 68, 69, 71, 76, 77, 79, 80, 81, 83, 85, 87, 93, 95, 112, 113, 115, 117, 119, 127, 128, 129, 130, 131
OFFSET
1,3
COMMENTS
Equivalently, numbers whose binary expansions encode intersection-closed finite sets of finite sets of nonnegative integers:
- the encoding is based on a double application of A133457,
- for example: 11 -> {0, 1, 3} -> {{}, {0}, {0, 1}},
- an intersection-closed set f satisfies: for any i and j in f, the intersection of i and j belongs to f.
For any k >= 0, if 2*k belongs to the sequence then 2*k+1 belongs to the sequence.
This sequence has similarities with A190939; here we consider the bitwise AND operator, there the bitwise XOR operator.
This sequence is infinite as it contains the powers of 2.
EXAMPLE
The first terms, alongside the corresponding intersection-closed sets, are:
n a(n) Intersection-closed set
---- ----- -----------------------
0 0 {}
1 1 {{}}
2 2 {{0}}
3 3 {{}, {0}}
4 4 {{1}}
5 5 {{}, {1}}
6 7 {{}, {0}, {1}}
7 8 {{0, 1}}
8 9 {{}, {0, 1}}
9 10 {{0}, {0, 1}}
10 11 {{}, {0}, {0, 1}}
11 12 {{1}, {0, 1}}
12 13 {{}, {1}, {0, 1}}
13 15 {{}, {0}, {1}, {0, 1}}
14 16 {{2}}
15 17 {{}, {2}}
16 19 {{}, {0}, {2}}
17 21 {{}, {1}, {2}}
PROG
(PARI) is(n) = { my (b=vector(hammingweight(n))); for (i=1, #b, n -= 2^b[i] = valuation(n, 2)); setbinop(bitand, b)==b }
CROSSREFS
Cf. A133457, A190939 (XOR analog), A359527 (OR analog).
Sequence in context: A079298 A263715 A023055 * A365819 A359908 A230872
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Jan 04 2023
STATUS
approved