login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into at most 4 positive Fibonacci numbers (with a single type of 1).
5

%I #13 May 26 2023 05:19:14

%S 1,1,2,3,4,5,6,6,8,7,8,8,8,8,8,8,9,8,9,8,8,8,7,8,9,7,10,8,8,9,7,8,8,4,

%T 8,5,8,9,6,10,8,6,10,6,9,8,5,9,6,6,8,4,8,4,1,8,4,7,9,5,10,7,6,10,6,8,

%U 6,3,10,5,7,9,5,8,5,2,9,4,7,6,2,8,4,3,8,1,4,1

%N Number of partitions of n into at most 4 positive Fibonacci numbers (with a single type of 1).

%H Alois P. Heinz, <a href="/A359513/b359513.txt">Table of n, a(n) for n = 0..20000</a>

%F a(n) = Sum_{k=0..4} A319394(n,k). - _Alois P. Heinz_, Jan 03 2023

%p h:= proc(n) option remember; `if`(n<1, 0, `if`((t->

%p issqr(t+4) or issqr(t-4))(5*n^2), n, h(n-1)))

%p end:

%p b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,

%p b(n, h(i-1))+expand(x*b(n-i, h(min(n-i, i)))))

%p end:

%p a:= n-> (p-> add(coeff(p, x, i), i=0..4))(b(n, h(n))):

%p seq(a(n), n=0..87); # _Alois P. Heinz_, Jan 03 2023

%t h[n_] := h[n] = If[n < 1, 0, With[{t = 5 n^2}, If[IntegerQ @ Sqrt[t + 4] || IntegerQ @ Sqrt[t - 4], n, h[n - 1]]]];

%t b[n_, i_] := b[n, i] = If[n == 0 || i == 1, x^n, b[n, h[i - 1]] + Expand[x*b[n - i, h[Min[n - i, i]]]]];

%t a[n_] := Sum[Coefficient[#, x, i], {i, 0, 4}]&[b[n, h[n]]];

%t Table[a[n], {n, 0, 87}] (* _Jean-François Alcover_, May 26 2023, after _Alois P. Heinz_ *)

%Y Cf. A000045, A003107, A319394, A319397, A359511, A359512, A359516.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Jan 03 2023