login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359513
Number of partitions of n into at most 4 positive Fibonacci numbers (with a single type of 1).
5
1, 1, 2, 3, 4, 5, 6, 6, 8, 7, 8, 8, 8, 8, 8, 8, 9, 8, 9, 8, 8, 8, 7, 8, 9, 7, 10, 8, 8, 9, 7, 8, 8, 4, 8, 5, 8, 9, 6, 10, 8, 6, 10, 6, 9, 8, 5, 9, 6, 6, 8, 4, 8, 4, 1, 8, 4, 7, 9, 5, 10, 7, 6, 10, 6, 8, 6, 3, 10, 5, 7, 9, 5, 8, 5, 2, 9, 4, 7, 6, 2, 8, 4, 3, 8, 1, 4, 1
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..4} A319394(n,k). - Alois P. Heinz, Jan 03 2023
MAPLE
h:= proc(n) option remember; `if`(n<1, 0, `if`((t->
issqr(t+4) or issqr(t-4))(5*n^2), n, h(n-1)))
end:
b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,
b(n, h(i-1))+expand(x*b(n-i, h(min(n-i, i)))))
end:
a:= n-> (p-> add(coeff(p, x, i), i=0..4))(b(n, h(n))):
seq(a(n), n=0..87); # Alois P. Heinz, Jan 03 2023
MATHEMATICA
h[n_] := h[n] = If[n < 1, 0, With[{t = 5 n^2}, If[IntegerQ @ Sqrt[t + 4] || IntegerQ @ Sqrt[t - 4], n, h[n - 1]]]];
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, x^n, b[n, h[i - 1]] + Expand[x*b[n - i, h[Min[n - i, i]]]]];
a[n_] := Sum[Coefficient[#, x, i], {i, 0, 4}]&[b[n, h[n]]];
Table[a[n], {n, 0, 87}] (* Jean-François Alcover, May 26 2023, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 03 2023
STATUS
approved