login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359415
Numbers k such that phi(k) is a 5-smooth number where phi is the Euler totient function.
0
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 48, 50, 51, 52, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 88, 90, 91, 93, 95, 96, 97, 99
OFFSET
1,2
EXAMPLE
20 is in the sequence because totient(20) = 8 and divisors of 8 are [1,2,4].
MAPLE
isA359415 := proc(n)
numtheory[factorset](numtheory[phi](n)) minus {2, 3, 5} ;
if nops(%) =0 then
true;
else
false;
end if;
end proc:
for n from 1 to 100 do
if isA359415(n) then
printf("%d, ", n) ;
end if;
end do: # R. J. Mathar, Mar 22 2023
MATHEMATICA
Select[Range[100], Max[FactorInteger[EulerPhi[#]][[;; , 1]]] <= 5 &] (* Amiram Eldar, Dec 30 2022 *)
PROG
(Python)
from sympy import totient
def isok(n):
f = totient(n)
while f & 1 == 0: f >>= 1
while f % 3 == 0: f //= 3
while f % 5 == 0: f //= 5
return f == 1
(PARI) issm(n) = n<7||vecmax(factor(n, 5)[, 1])<7; \\ A051037
isok(k) = issm(eulerphi(k)); \\ Michel Marcus, Jan 04 2023
CROSSREFS
Cf. A000010 (phi), A051037 (5-smooth numbers).
Sequence in context: A214922 A004830 A081330 * A080682 A182049 A038770
KEYWORD
nonn,easy
AUTHOR
Darío Clavijo, Dec 30 2022
STATUS
approved