

A182049


Numbers m such that m! is not pandigital in decimal representation.


3



0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28, 29, 30, 32, 38, 41
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

A137580(a(n)) < 10.
Conjecture: sequence is finite and a(32) = 41 is the last term.
a(33) > 100000 if it exists.  Chai Wah Wu, Jan 27 2019


LINKS

Table of n, a(n) for n=1..32.
Eric Weisstein's World of Mathematics, Pandigital Number
Wikipedia, Pandigital number
Index entries for sequences related to factorial numbers.


EXAMPLE

20! = 2432902008176640000 > 0000000122234466789 with missing 5, therefore A137580(20) = 9, a(21)=20;
21! = 51090942171709440000 > 00000001112444577999 with missing {3,6,8}, therefore A137580(21) = 7, a(22)=21;
22! = 1124000727777607680000 > 0000000011224667777778 with missing {5,7,9}, therefore A137580(22) = 7, a(23)=22;
23! = 25852016738884976640000 > 00000122344556667788889 pandigital, A137580(23) = 10, 23 is not a term;
24! = 620448401733239439360000 > 000000122333334444667899 with missing 5, therefore A137580(24) = 9, a(24)=24;
25! = 15511210043330985984000000 > 00000000011112333445558899 with missing {6,7}, therefore A137580(24) = 8, a(25)=25.


PROG

(Haskell)
a182049 n = a182049_list !! (n1)
a182049_list = filter ((< 10) . a137580) [0..]
(PARI) for(n=0, 999, #Set(digits(n!))<10&&print1(n", "))


CROSSREFS

Cf. A137580.
Sequence in context: A004830 A081330 A080682 * A038770 A193176 A263314
Adjacent sequences: A182046 A182047 A182048 * A182050 A182051 A182052


KEYWORD

nonn,base


AUTHOR

Reinhard Zumkeller, Apr 08 2012


STATUS

approved



