login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359341
Number of pandigital squares with n digits.
0
0, 0, 0, 0, 0, 0, 0, 0, 0, 87, 504, 4275, 29433, 179235, 955818, 4653802, 21034628, 89834238, 366490378, 1440743933, 5493453262
OFFSET
1,10
COMMENTS
Pandigital squares are perfect squares containing each digit from 0 to 9 at least once.
EXAMPLE
a(n) = 0 for n < 10, since a number must have at least ten digits to contain all digits from 0 to 9 at least once.
a(10) = 87 since there are 87 ten-digit pandigital squares from 1026753849 to 9814072356 (cf. A036745) containing each digit from 0 to 9, here exactly once.
MAPLE
a:=proc(n::posint) local p, k, K: if n<10 then p:=0; else p:=0: for k from ceil(sqrt(10^(n-1))) to floor(sqrt(10^n)) do K:=convert(k^2, base, 10); if nops({op(K)})=10 then p:=p+1: fi: od: fi: return p; end:
PROG
(Python)
from math import isqrt
def c(n): return len(set(str(n))) == 10
def a(n):
lb = isqrt(10**(n-1)) if n&1 else isqrt(10**(n-1)) + 1
return sum(1 for k in range(lb, isqrt(10**n-1)+1) if c(k*k))
print([a(n) for n in range(1, 14)]) # Michael S. Branicky, Dec 27 2022
CROSSREFS
Sequence in context: A183724 A221312 A098139 * A297509 A259510 A109601
KEYWORD
nonn,base
AUTHOR
Martin Renner, Dec 27 2022
EXTENSIONS
a(19)-a(21) from Michael S. Branicky, Dec 27 2022
STATUS
approved