login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225218
Square numbers containing all the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.
14
1026753849, 1042385796, 1098524736, 1237069584, 1248703569, 1278563049, 1285437609, 1382054976, 1436789025, 1503267984, 1532487609, 1547320896, 1643897025, 1827049536, 1927385604, 1937408256, 2076351489, 2081549376, 2170348569, 2386517904, 2431870596
OFFSET
1,1
COMMENTS
The first term having a repeated digit is 10057482369. - Colin Barker, Jan 15 2014
LINKS
FORMULA
a(n) = A054038(n)^2. - Colin Barker, Jan 15 2014
EXAMPLE
1026753849 is in the sequence because 1026753849 = 32043^2 and 1026753849 contains all ten digits 0, ..., 9.
MATHEMATICA
Select[#^2 &[Range[1000000]], Length[Union[IntegerDigits[#]]] == 10 &] (* Geoffrey Critzer, Jan 04 2015 *)
PROG
(PARI) s=[]; for(n=1, 100000, if(#vecsort(eval(Vec(Str(n^2))), , 8)==10, s=concat(s, n^2))); s \\ Colin Barker, Jan 15 2014
(Python)
from itertools import count, islice
def c(n): return len(set(str(n))) == 10
def agen(): yield from (k*k for k in count(31622) if c(k*k))
print(list(islice(agen(), 21))) # Michael S. Branicky, Dec 27 2022
CROSSREFS
Supersequence of A036745.
Sequence in context: A175845 A225295 A036745 * A359342 A268312 A035124
KEYWORD
nonn,base
AUTHOR
Reiner Moewald, May 02 2013
STATUS
approved