login
A359220
Number of steps to reach 0 from A359219(n) where A359219 are the starting numbers that require more iterations in the map x->A359194(x) than any smaller number.
4
0, 1, 2, 11, 12, 13, 19, 80, 81, 83, 7572, 7573, 7574, 7578, 7580, 664475, 664882, 3180929, 3180930, 3180931, 3181981, 3181988, 3182002, 3182226, 120796790, 556068798, 556068799, 556068871, 556068872, 572086553, 572086610, 1246707529, 1246707552, 1246707555, 1246707602
OFFSET
1,3
COMMENTS
It is unknown whether all starting numbers reach 0; the next term, a(36) depends on whether 425720 ever reaches 0 (see A359207). It remains nonzero after 10^10 iterations.
A359207(425720) = 87037147316. Calculated by Tom Duff (12/16/22) - Joshua Searle, Jan 10 2023
a(4) - a(7) only differ by a small fraction of their starting terms. The same is true for the terms in the intervals a(8) - a(10), a(11) - a(15), a(16) - a(17) and a(18) - a(24). It may also be true for a(26) - a(29), a(30) - a(31) and a(32) - a(35).
EXAMPLE
a(4) is the step count from the starting number A359219(4) = 3: (3, 6, 13, 24, 55, 90, 241, 300, 123, 142, 85, 0) -- 11 steps, hence a(4) = 11.
PROG
(Python)
from itertools import count, islice
def f(n): return 1 if n == 0 else (m:=3*n)^((1 << m.bit_length())-1)
def iters(n):
i, fi = 0, n
while fi != 0: i, fi = i+1, f(fi)
return i
def agen(): # generator of terms
record = -1
for m in count(0):
v = iters(m)
if v > record: yield v; record = v
print(list(islice(agen(), 18))) # Michael S. Branicky, Dec 21 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Joshua Searle, Dec 21 2022
EXTENSIONS
a(27) and beyond from Tom Duff (SeqFan mailing list, Dec 19 2022)
STATUS
approved