login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359214
a(n) is the least k >= 0 such that A359194^k(A358668(n)) = n (where A359194^k denotes the k-th iterate of A359194).
2
0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0, 4, 3, 0, 5, 0, 0, 1, 74, 0, 3, 7, 0, 1, 0, 0, 1, 5, 0, 0, 6, 0, 0, 2, 0, 77, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 8, 0, 0, 4, 0, 9, 1, 0, 0, 75, 0, 7, 6, 0, 8, 0, 0, 1, 0, 0, 76, 0, 0, 1, 5418, 0, 1, 0, 0, 2, 0, 0
OFFSET
0,14
LINKS
Rémy Sigrist, PARI program
FORMULA
a(n) = 0 iff A358668(n) = n.
a(3*n+2) = 0. - Thomas Scheuerle, Dec 22 2022
EXAMPLE
The orbit of 0 under repeated application of A359194 is:
0, 1, 0, ...
So a(0) = 0, a(1) = 1.
The orbit of 2 under repeated application of A359194 is:
2, 1, 0, 1, 0, ...
So a(2) = 0.
The orbit of 3 under repeated application of A359194 is:
3, 6, 13, 24, 55, 90, 241, 300, 123, 142, 85, 0, 1, 0, ...
So a(3) = 0, a(6) = 1, a(13) = 2, a(24) = 3, a(55) = 4, etc.
MATHEMATICA
nn = 83; c[_] = -1; c[0] = 0; f[n_] := FromDigits[BitXor[1, IntegerDigits[3*n, 2]], 2]; Do[(MapIndexed[If[c[#1] == -1, Set[c[#1], First[#2] - 1]] &, #]; -1 + Length[#]) &@ NestWhileList[f, n, c[#] == -1 && # > 1 &], {n, 0, nn}]; Array[c, nn] (* Michael De Vlieger, Dec 23 2022 *)
PROG
(PARI) See Links section.
CROSSREFS
Cf. A343858 (smallest numbers inside cyclic trajectories of the generalized Collatz function bx+c).
Sequence in context: A145382 A192423 A368667 * A265584 A360205 A078909
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Dec 22 2022
STATUS
approved