login
A359214
a(n) is the least k >= 0 such that A359194^k(A358668(n)) = n (where A359194^k denotes the k-th iterate of A359194).
2
0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0, 4, 3, 0, 5, 0, 0, 1, 74, 0, 3, 7, 0, 1, 0, 0, 1, 5, 0, 0, 6, 0, 0, 2, 0, 77, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 8, 0, 0, 4, 0, 9, 1, 0, 0, 75, 0, 7, 6, 0, 8, 0, 0, 1, 0, 0, 76, 0, 0, 1, 5418, 0, 1, 0, 0, 2, 0, 0
OFFSET
0,14
LINKS
Rémy Sigrist, PARI program
FORMULA
a(n) = 0 iff A358668(n) = n.
a(3*n+2) = 0. - Thomas Scheuerle, Dec 22 2022
EXAMPLE
The orbit of 0 under repeated application of A359194 is:
0, 1, 0, ...
So a(0) = 0, a(1) = 1.
The orbit of 2 under repeated application of A359194 is:
2, 1, 0, 1, 0, ...
So a(2) = 0.
The orbit of 3 under repeated application of A359194 is:
3, 6, 13, 24, 55, 90, 241, 300, 123, 142, 85, 0, 1, 0, ...
So a(3) = 0, a(6) = 1, a(13) = 2, a(24) = 3, a(55) = 4, etc.
MATHEMATICA
nn = 83; c[_] = -1; c[0] = 0; f[n_] := FromDigits[BitXor[1, IntegerDigits[3*n, 2]], 2]; Do[(MapIndexed[If[c[#1] == -1, Set[c[#1], First[#2] - 1]] &, #]; -1 + Length[#]) &@ NestWhileList[f, n, c[#] == -1 && # > 1 &], {n, 0, nn}]; Array[c, nn] (* Michael De Vlieger, Dec 23 2022 *)
PROG
(PARI) See Links section.
CROSSREFS
Cf. A343858 (smallest numbers inside cyclic trajectories of the generalized Collatz function bx+c).
Sequence in context: A145382 A192423 A368667 * A265584 A360205 A078909
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Dec 22 2022
STATUS
approved