login
A359048
a(n) is the minimum denominator d such that the decimal expansion of n/d is eventually periodic with periodicity not equal to zero.
0
3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 9, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 9, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 11, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 9, 3, 3, 7, 3, 3, 7
OFFSET
1,1
COMMENTS
a(n) is the smallest prime power p^e that does not divide n, where p is a prime that doesn't divide 10, and e >= 1. - Jon E. Schoenfield, Dec 24 2022
EXAMPLE
For n=21, a(21) = 9 because 21/9 = 2.333... (periodic) and 9 is the first number with that property for numerator 21. That's because 21/2 = 10.5, 21/3 = 7, 21/4 = 5.25, 21/5 = 4.2, 21/6 = 3.5, 21/7 = 3 and 21/8 = 2.625.
MAPLE
f:= proc(n) local d;
for d from 3 by 2 do
if (n mod d <> 0) and (d mod 5 <> 0) and nops(numtheory:-factorset(d))=1 then return d fi
od
end proc:
map(f, [$1..100]); # Robert Israel, Jan 19 2023
PROG
(PARI) a(n) = for(d=1, oo, my(p); if (isprimepower(d, &p) && (10 % p) && (n % d), return(d))); \\ Michel Marcus, Dec 28 2022
CROSSREFS
Sequence in context: A366982 A366973 A076560 * A096915 A249806 A249382
KEYWORD
base,easy,hear,nonn
AUTHOR
Leonardo Sznajder, Dec 14 2022
EXTENSIONS
More terms from Michel Marcus, Dec 28 2022
STATUS
approved