The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A249382 Smallest odd prime Q such that Q*2^prime(n)-1 is also a prime number. 3
 3, 3, 7, 3, 3, 31, 7, 61, 13, 7, 43, 31, 19, 3, 31, 307, 733, 79, 43, 73, 421, 73, 181, 19, 157, 181, 3, 739, 421, 127, 103, 73, 571, 421, 109, 211, 1459, 103, 1693, 487, 829, 139, 1153, 439, 3067, 601, 199, 853, 421, 3541, 1069, 1279, 1297 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Pierre CAMI, Table of n, a(n) for n = 1..1800 EXAMPLE 3*2^2-1=11 prime so a(1)=3 as 2 is prime(1). 3*2^3-1=23 prime so a(2)=3 as 3 is prime(2). 3*2^5-1=95 composite. 5*2^5-1=159 composite. 7*2^5-1=223 prime so a(3)=7 as 5 is prime(3). MATHEMATICA a249382[n_Integer] := Module[{q = 2}, While[! PrimeQ[Prime[q]*2^Prime[n] - 1], q++]; Prime[q]]; a249382/@Range[53] (* Michael De Vlieger, Nov 12 2014 *) PROG (PFGW & SCRIPT) SCRIPT DIM i DIM j DIM n, 0 OPENFILEOUT myf, a(n) LABEL loop1 SET n, n+1 SET i, 1 LABEL loop2 SET i, i+1 SET j, p(i) PRP j*2^p(n)-1 IF ISPRP THEN GOTO a GOTO loop2 LABEL a WRITE myf, j GOTO loop1 (PARI) listp(nn) = {for (n=1, nn, k=2; while(!isprime(prime(k)*2^prime(n)-1), k++); print1(prime(k), ", "); ); } \\ Michel Marcus, Oct 27 2014 CROSSREFS Cf. A249383, A249384. Sequence in context: A359048 A096915 A249806 * A317929 A285387 A100803 Adjacent sequences: A249379 A249380 A249381 * A249383 A249384 A249385 KEYWORD nonn AUTHOR Pierre CAMI, Oct 27 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 13 08:45 EDT 2024. Contains 375904 sequences. (Running on oeis4.)