login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358984
The number of n-digit numbers k such that k + digit reversal of k (A056964) is a square.
1
3, 8, 19, 0, 169, 896, 1496, 3334, 21789, 79403, 239439, 651236, 1670022, 3015650, 27292097, 55608749, 234846164, 366081231, 2594727780, 6395506991
OFFSET
1,1
COMMENTS
Number of terms of A061230 which are n digits long.
EXAMPLE
a(1) = 3 because there are 3 single-digit numbers: 0, 2, 8 such that b + b = m^2, for example, 8 + 8 = 16 = 4^2;
a(2) = 8 because there are 8 two-digit numbers: 29, 38, 47, 56, 65, 74, 83, 92 such that bc + cb = m^2, for example, 29 + 92 = 121 = 11^2.
MATHEMATICA
a[n_]:=Length[Select[Table[k, {k, 10^(n-1), 10^n-1}], IntegerQ[Sqrt[#+FromDigits[Reverse[IntegerDigits[#]]]]]&]]; Array[a, 10] (* Stefano Spezia, Dec 09 2022 *)
PROG
(Python)
from math import isqrt
def s(n): return isqrt(n)**2 == n
def c(n): return s(n + int(str(n)[::-1]))
def a(n): return 3 if n == 1 else sum(1 for k in range(10**(n-1), 10**n) if c(k))
print([a(n) for n in range(1, 7)]) # Michael S. Branicky, Dec 08 2022
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Nicolay Avilov, Dec 08 2022
EXTENSIONS
a(9)-a(10) from Michael S. Branicky, Dec 08 2022
a(11)-a(20) from Talmon Silver, Dec 25 2022
STATUS
approved