login
A358897
Numbers k such that p(k)^p(k) < p(k+1)^p(k-1), where p(k) = prime(k).
2
46, 99, 263, 295, 297, 319, 344, 378, 409, 429, 487, 573, 602, 838, 914, 937, 945, 985, 1051, 1116, 1170, 1231, 1233, 1288, 1392, 1446, 1457, 1551, 1585, 1648, 1675, 1708, 1710, 1831, 1879, 1908, 1983, 2032, 2064, 2154, 2176, 2250, 2310, 2327, 2344, 2524
OFFSET
1,1
EXAMPLE
For k=46, let p = prime(45) = 197, q = prime(46) = 199, and r = prime(47) = 211. Then q^q < r^p, where (r^p) = (2.5815...)*q^q.
MATHEMATICA
p[n_] := Prime[n];
u = Select[1 + Range[3000], p[#]^p[#] < p[# + 1]^p[# - 1] &] (* A358897 *)
Prime[u] (* A358898 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Dec 06 2022
STATUS
approved