login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the sum of the unitary divisors of n that are exponentially odd (A268335).
4

%I #19 Jul 09 2024 00:53:51

%S 1,3,4,1,6,12,8,9,1,18,12,4,14,24,24,1,18,3,20,6,32,36,24,36,1,42,28,

%T 8,30,72,32,33,48,54,48,1,38,60,56,54,42,96,44,12,6,72,48,4,1,3,72,14,

%U 54,84,72,72,80,90,60,24,62,96,8,1,84,144,68,18,96,144

%N a(n) is the sum of the unitary divisors of n that are exponentially odd (A268335).

%C The number of unitary divisors of n that are exponentially odd is A055076(n).

%H Amiram Eldar, <a href="/A358346/b358346.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) >= 1 with equality if and only if n is a square (A000290).

%F a(n) <= A033634(n) with equality if and only if n is squarefree (A005117).

%F Multiplicative with a(p^e) = p^e + 1 if e is odd, and 1 otherwise.

%F a(n) = A034448(n)/A358347(n).

%F Sum_{k=1..n} a(k) ~ n^2/2.

%F From _Amiram Eldar_, Sep 14 2023: (Start)

%F a(n) = A034448(A350389(n)).

%F Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-1) - 1/p^(2*s-2) - 1/p^(2*s-1)). (End)

%t f[p_, e_] := 1 + If[OddQ[e], p^e, 0]; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]

%o (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + if(f[i,2]%2, f[i,1]^f[i,2], 0));}

%Y Cf. A000290, A005117, A055076, A077610, A268335, A351569.

%Y Similar sequences: A033634, A034448, A035316, A358347.

%K nonn,easy,mult

%O 1,2

%A _Amiram Eldar_, Nov 11 2022