OFFSET
1,2
FORMULA
a(n) = Sum_{k=1..n} gcd(k, n) * A005361(gcd(k, n)) for n > 0.
Dirichlet g.f.: (zeta(s-1)^2 * zeta(2*s-2) * zeta(3*s-3)) / (zeta(s) * zeta(6*s-6)).
Sum_{k=1..n} a(k) ~ (zeta(3)/(2*zeta(6))) * n^2 * (log(n) + 2*gamma - 1/2 + zeta'(2)/zeta(2) + 3*zeta'(3)/zeta(3) + 6*zeta'(6)/zeta(6)), where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 13 2024
MATHEMATICA
f[p_, e_] := ((p - 1)*(1 + e*(e + 1)/2) + e)*p^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 09 2022 *)
PROG
(PARI) a(n) = { my (f=factor(n), p, e, v=1); for (k=1, #f~, p=f[k, 1]; e=f[k, 2]; v *= ((p-1) * (1 + e*(e+1)/2) + e) * p^(e-1)); return (v) } \\ Rémy Sigrist, Jan 18 2023
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Werner Schulte, Nov 09 2022
STATUS
approved