Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Dec 21 2022 21:59:03
%S 6,15,34,353,175234,9045146753,121609715057619333634,
%T 4138643330264389621194448797227488932353,
%U 27728719906622802548355602700962556264398170527494726660553210068191276023007234
%N Congruent number sequence starting from the Pythagorean triple (3,4,5).
%H G. Jacob Martens, <a href="https://arxiv.org/abs/2112.09553">Rational right triangles and the Congruent Number Problem</a>, arXiv:2112.09553 [math.GM], 2021, see section 8 The unseen recurrence, equations (79,80).
%e Starting with the triple (3,4,5) and choosing the b side we obtain by the recurrence the right triangles: (15/2, 4, 17/2), (136/15, 15/2, 353/30), (5295/136, 272/15, 87617/2040), (47663648/79425, 79425/136, 9045146753/10801800), ...
%e So a(4) = (5295/136) * (272/15) / 2 = 353.
%t nxt[{n_, p_, q_}] := Module[{n1 = Sqrt[p^4 + 4 n^2 q^4], p1 = p Sqrt[p^4 + 4 n^2 q^4], q1 = q^2 n},
%t a = p1/q1; b = 2 n1 q1/p1; c = Sqrt[p1^4 + 4 n1^2 q1^4]/(p1 q1);
%t Return [{ a b/2, Numerator[b], Denominator[b]}];]
%t l = NestList[nxt, {6, 3, 1}, 8] ;
%t l[[All, 1]]
%Y Cf. A081465 (numerators of hypotenuses).
%K nonn
%O 1,1
%A _Gerry Martens_, Nov 04 2022