login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358210
Congruent number sequence starting from the Pythagorean triple (3,4,5).
0
6, 15, 34, 353, 175234, 9045146753, 121609715057619333634, 4138643330264389621194448797227488932353, 27728719906622802548355602700962556264398170527494726660553210068191276023007234
OFFSET
1,1
LINKS
G. Jacob Martens, Rational right triangles and the Congruent Number Problem, arXiv:2112.09553 [math.GM], 2021, see section 8 The unseen recurrence, equations (79,80).
EXAMPLE
Starting with the triple (3,4,5) and choosing the b side we obtain by the recurrence the right triangles: (15/2, 4, 17/2), (136/15, 15/2, 353/30), (5295/136, 272/15, 87617/2040), (47663648/79425, 79425/136, 9045146753/10801800), ...
So a(4) = (5295/136) * (272/15) / 2 = 353.
MATHEMATICA
nxt[{n_, p_, q_}] := Module[{n1 = Sqrt[p^4 + 4 n^2 q^4], p1 = p Sqrt[p^4 + 4 n^2 q^4], q1 = q^2 n},
a = p1/q1; b = 2 n1 q1/p1; c = Sqrt[p1^4 + 4 n1^2 q1^4]/(p1 q1);
Return [{ a b/2, Numerator[b], Denominator[b]}]; ]
l = NestList[nxt, {6, 3, 1}, 8] ;
l[[All, 1]]
CROSSREFS
Cf. A081465 (numerators of hypotenuses).
Sequence in context: A232604 A332735 A120849 * A338053 A030661 A245630
KEYWORD
nonn
AUTHOR
Gerry Martens, Nov 04 2022
STATUS
approved