OFFSET
1,4
LINKS
Robert Israel, Table of n, a(n) for n = 1..10011(rows 1 to 141, flattened)
FORMULA
The following follow from the identity A000045(n) = A000045(k)*A000032(n-k) + (-1)^k*A000045(n-2*k).
T(2*m*k,k) = Sum_{j=0..m-1} (-1)^((j+m+1)*k)*A000032((2*j+1)*k).
T((2*m+1)*k,k) = -1 + Sum_{j=0..m} (-1)^((j+m)*k)*A000032(2*j*k) if k is even.
T((2*m+1)*k,k) = (-1)^(m+1) + Sum_{j=0..m} (-1)^((j+m)*k)*A000032(2*j*k) if k is odd.
If 2*m*k < n < (2*m+1)*k and k >= 4 is even, then T(n,k) = Sum_{j=0..m-1} A000032(n-(2*j+1)*k)
If 2*m*k < n < (2*m+1)*k, m is even and k is odd, then T(n,k) = Sum_{j=0..m-1} (-1)^j*A000032(n-(2*j+1)*k).
If 2*m*k < n < (2*m+1)*k, m is odd and k is odd, then T(n,k) = -1 + Sum_{j=0..m-1} (-1)^j*A000032(n-(2*j+1)*k).
If (2*m+1)*k < n < (2*m+2)*k, and either k is odd and n+m is even, or k >= 4 is even and n is odd, then T(n,k) = Sum_{j=0..m} (-1)^j*A000032(n-(2*j+1)*k).
If (2*m+1)*k < n < (2*m+2)*k, and either k is odd and n+m is odd, or k >= 4 is even and n is even, then T(n,k) = -1 + Sum_{j=0..m} (-1)^j*A000032(n-(2*j+1)*k).
EXAMPLE
Triangle starts:
1;
1, 1;
2, 2, 1;
3, 3, 1, 1;
5, 5, 2, 1, 1;
8, 8, 4, 2, 1, 1;
13, 13, 6, 4, 2, 1, 1;
21, 21, 10, 7, 4, 2, 1, 1;
34, 34, 17, 11, 6, 4, 2, 1, 1;
55, 55, 27, 18, 11, 6, 4, 2, 1, 1;
89, 89, 44, 29, 17, 11, 6, 4, 2, 1, 1;
MAPLE
f:= (n, k) -> iquo(combinat:-fibonacci(n), combinat:-fibonacci(k)):
for n from 1 to 12 do
seq(f(n, k), k=1..n)
od:
CROSSREFS
AUTHOR
J. M. Bergot and Robert Israel, Oct 13 2022
STATUS
approved