login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357813
a(n) is the least number k such that the sum of n^2 consecutive primes starting at prime(k) is a square.
1
3, 1, 78, 333, 84, 499, 36, 1874, 1102, 18, 183, 2706, 23, 104, 739, 1055, 8435, 633, 42130, 13800, 942, 55693, 7449, 13270, 41410, 4317, 17167, 61999, 17117, 9161, 46704, 12447, 2679, 2971, 3946, 103089, 6359, 19601, 7240, 422, 690, 20851, 963, 36597, 3559, 111687, 12926, 4071, 30622, 6355
OFFSET
2,1
FORMULA
a(n) = A230327(n^2).
EXAMPLE
Define sp(k,n) to be the sum of n^2 consecutive primes starting at prime(k).
a(2) = 3 because sp(k,2) at k=3 is 5 + 7 + 11 + 13 = 36 = 6^2, a square, and no smaller k has this property.
a(3) = 1 because sp(k,3) at k=1 is 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 = 100 = 10^2, a square, and no smaller k has this property.
a(4) = 78 because sp(k,4) at k=78 is 397 + 401 + ... + 487 = 7056 = 84^2, a square, and no smaller k has this property.
PROG
(PARI)
\\ sum of n^2 consecutive primes starting at prime(k).
sp(k, n)=my(u=primes([prime(k), prime(k+n*n-1)])); return(vecsum(u))
\\ Least number k such that sp(k, n) is a square.
a(n)=my(k=1); while(!issquare(sp(k, n)), k++); k
(PARI) a(n) = { my(pr = primes(n^2), s = vecsum(pr), startprime = nextprime(pr[#pr] + 1), res = 1); pr = List(pr); forprime(p = startprime, oo, if(issquare(s), return(res); ); res++; s += (p - pr[1]); listput(pr, p); listpop(pr, 1); ) } \\ David A. Corneth, Nov 13 2022
CROSSREFS
Cf. A358156. Subsequence of A230327.
Sequence in context: A361091 A344050 A213069 * A266277 A016482 A012854
KEYWORD
nonn
AUTHOR
Jean-Marc Rebert, Nov 12 2022
STATUS
approved