login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357798
a(n) = coefficient of x^n in the power series A(x) such that: 1 = Sum_{n=-oo..+oo} x^(n+1) * (2 - x^(n+1))^n * A(x)^n.
2
1, 2, 6, 20, 78, 364, 1758, 9144, 48508, 264014, 1457624, 8158260, 46134878, 263312552, 1514534512, 8771202984, 51101608190, 299306977508, 1761377916048, 10409550718692, 61755225688926, 367639850029404, 2195551697108888, 13149811270786752, 78967249613057836, 475373797733460598
OFFSET
0,2
COMMENTS
Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^n)^n, which holds formally for all y.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following.
(1) 1 = Sum_{n=-oo..+oo} x^(n+1) * (2 - x^(n+1))^n * A(x)^n.
(2) 1 = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n^2) / ((1 - 2*x^n)^(n+1) * A(x)^(n+1)).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 6*x^2 + 20*x^3 + 78*x^4 + 364*x^5 + 1758*x^6 + 9144*x^7 + 48508*x^8 + 264014*x^9 + 1457624*x^10 + 8158260*x^11 + 46134878*x^12 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( sum(n=-#A, #A, x^(n+1) * (2 - x^(n+1) +x*O(x^#A) )^n * Ser(A)^n ), #A-1) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( sum(n=-#A, #A, (-1)^(n+1) * x^(n^2) / ((1 - 2*x^n +x*O(x^#A) )^(n+1) * Ser(A)^(n+1)) ), #A-1) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A357797.
Sequence in context: A098469 A081563 A038393 * A027221 A346747 A300514
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 22 2022
STATUS
approved