login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098469
A sequence related to the even-indexed Catalan numbers.
1
1, 2, 6, 20, 78, 332, 1516, 7240, 35734, 180620, 929940, 4858328, 25687052, 137177016, 738819672, 4008435984, 21886788582, 120178329740, 663179894788, 3675923244856, 20456707469540, 114254175491304, 640223315385576
OFFSET
0,2
COMMENTS
Binomial transform of A098465. Second binomial transform of (1,0,2,0,14,0,132,0,1430,...) (set odd-indexed Catalan numbers to zero).
LINKS
FORMULA
G.f.: (sqrt(1+2*x) - sqrt(1-6*x))/(4*x*sqrt(1-2*x)).
a(n) = Sum_{k=0..floor(n/2)} C(n,2k)*C(k)*2^(n-2k).
a(n) = Sum_{k=0..n} C(n,k)*2^(n-k)*C(k)*(1-(-1)^k)/2.
Recurrence: n*(n+1)*a(n) = 4*n*(2*n-1)*a(n-1) - 4*(2*n^2 - 4*n + 3)*a(n-2) - 16*(n-2)*(2*n-3)*a(n-3) + 48*(n-3)*(n-2)*a(n-4). - Vaclav Kotesovec, Oct 24 2012
a(n) ~ 3*6^(n+1/2)/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 24 2012
MATHEMATICA
CoefficientList[Series[(Sqrt[1+2*x]-Sqrt[1-6*x])/(4*x*Sqrt[1-2*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 24 2012 *)
PROG
(PARI) x='x+O('x^66); Vec((sqrt(1+2*x)-sqrt(1-6*x))/(4*x*sqrt(1-2*x))) \\ Joerg Arndt, May 11 2013
CROSSREFS
Cf. A048990.
Sequence in context: A370947 A150181 A150182 * A081563 A038393 A357798
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 09 2004, corrected Mar 31 2007
STATUS
approved