OFFSET
1,4
COMMENTS
Conjecture: a(n+1) - a(n) has all its record values at n = A135972(k) and the record values of a(n-1) - a(n) are a subsequence of A025487. This was verified for n = 1..20000. - Thomas Scheuerle, Oct 06 2022
LINKS
R. Heyman, Primes in floor function sets, Integers 22(2022), #A59.
FORMULA
a(n) = c*n + O(n^(1/2)), where c is the sum of 1/(q*(q+1)) over all prime powers q.
EXAMPLE
For n=8 we have floor(8/1) = 8 = 2^3, a prime power; floor(8/2) = 4 = 2^2, a prime power; floor(8/3) = floor(8/4) = 2 = 2^1, a prime power. Each remaining term of the sequence is 1, which is not a prime power, so a(8) = 4.
PROG
(MATLAB)
function a = A357604( max_n )
for n = 1:max_n
s = floor(n./[1:n]); c = 0;
for m = 1:n-1
f = factor(s(m));
if s(m) > 1 && length(unique(f)) == 1
c = c+1;
end
end
a(n) = c;
end
end % Thomas Scheuerle, Oct 06 2022
(PARI) a(n) = sum(k=1, n, isprimepower(n\k)!=0); \\ Thomas Scheuerle, Oct 07 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Randell Heyman, Oct 06 2022
EXTENSIONS
a(12)-a(72) from Thomas Scheuerle, Oct 06 2022
STATUS
approved