The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A357604 Number of prime powers in the sequence of the floor of n/k for k <= n, A010766. 1
 0, 1, 1, 2, 2, 2, 3, 4, 4, 4, 5, 4, 5, 6, 6, 8, 8, 7, 8, 7, 8, 10, 11, 9, 10, 11, 12, 12, 13, 11, 12, 14, 14, 15, 16, 14, 15, 16, 17, 16, 17, 16, 17, 18, 18, 20, 21, 19, 21, 21, 21, 22, 23, 22, 23, 23, 24, 26, 27, 22, 23, 24, 25, 28, 28, 28, 29, 29, 30, 30, 31, 27 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Conjecture: a(n+1) - a(n) has all its record values at n = A135972(k) and the record values of a(n-1) - a(n) are a subsequence of A025487. This was verified for n = 1..20000. - Thomas Scheuerle, Oct 06 2022 LINKS Table of n, a(n) for n=1..72. R. Heyman, Primes in floor function sets, Integers 22(2022), #A59. FORMULA a(n) = c*n + O(n^(1/2)), where c is the sum of 1/(q*(q+1)) over all prime powers q. EXAMPLE For n=8 we have floor(8/1) = 8 = 2^3, a prime power; floor(8/2) = 4 = 2^2, a prime power; floor(8/3) = floor(8/4) = 2 = 2^1, a prime power. Each remaining term of the sequence is 1, which is not a prime power, so a(8) = 4. PROG (MATLAB) function a = A357604( max_n ) for n = 1:max_n s = floor(n./[1:n]); c = 0; for m = 1:n-1 f = factor(s(m)); if s(m) > 1 && length(unique(f)) == 1 c = c+1; end end a(n) = c; end end % Thomas Scheuerle, Oct 06 2022 (PARI) a(n) = sum(k=1, n, isprimepower(n\k)!=0); \\ Thomas Scheuerle, Oct 07 2022 CROSSREFS Cf. A000961, A025487, A135972, A010766. Sequence in context: A284520 A369057 A342248 * A090702 A029124 A113512 Adjacent sequences: A357601 A357602 A357603 * A357605 A357606 A357607 KEYWORD nonn AUTHOR Randell Heyman, Oct 06 2022 EXTENSIONS a(12)-a(72) from Thomas Scheuerle, Oct 06 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 24 05:49 EST 2024. Contains 370293 sequences. (Running on oeis4.)