login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n-node tournaments that have exactly three circular triads.
2

%I #23 Oct 13 2022 12:45:56

%S 240,2880,33600,403200,5093760,68275200,972787200,14724864000,

%T 236396160000,4016659046400,72067387392000,1362306097152000,

%U 27071765360640000,564357385912320000,12317692759916544000,280955128203509760000

%N Number of n-node tournaments that have exactly three circular triads.

%H J. B. Kadane, <a href="https://doi.org/10.1214/aoms/1177699532">Some equivalence classes in paired comparisons</a>, The Annals of Mathematical Statistics, 37 (1966), 488-494.

%F a(n) = n!*(2*(n-4) + (1/3)*(n-5)*(n-6) + (1/162)*(n-6)*(n-7)*(n-8)*[n>5]) (see Kadane).

%F E.g.f.: (x^4 - 18*x^3 + 72*x^2 - 108*x + 54)*x^5/((3^3)*(1-x)^4).

%e a(6) = 6!*(2*(6-4) + (1/3)*(6-5)*(6-6) + (1/162)*(6-6)*(6-7)*(6-8)*[6>5]) = 2880.

%t Table[n!*(2*(n-4) + (1/3)*(n-5)*(n-6) + (1/162)*(n-6)*(n-7)*(n-8)*Boole[n>5]), {n,5,20}] (* _Stefano Spezia_, Sep 27 2022 *)

%Y Cf. A357242, A357248, A357266.

%K nonn

%O 5,1

%A _Ian R Harris_, _Ryan P. A. McShane_, Sep 20 2022