login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the smallest number with exactly n divisors that are hoax numbers (A019506).
0

%I #12 Oct 14 2022 08:52:59

%S 1,22,308,638,3696,4212,18480,26400,55080,52800,73920,108108,220320,

%T 216216,275400,324324,432432,550800,734400,1908000,1144800,1101600,

%U 1377000,1652400,3027024,2203200,4039200,2754000,3304800,5724000,6528600,9180000,8586000,5508000

%N a(n) is the smallest number with exactly n divisors that are hoax numbers (A019506).

%e 1 has no divisors in A019506, so a(0) = 1;

%e 22 has divisors 1, 2, 11, 22, and 22 = A019506(1), so a(1) = 22.

%e 308 has divisors 1, 2, 4, 7, 11, 14, 22, 28, 44, 77, 154, 308 and 22 = A019506(1), 308 = A019506(14), so a(2) = 308.

%t digitSum[n_] := Total @ IntegerDigits[n]; hoaxQ[n_] := CompositeQ[n] && Total[digitSum /@ FactorInteger[n][[;; , 1]]] == digitSum[n]; f[n_] := DivisorSum[n, 1 &, hoaxQ[#] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[10, 10^5] (* _Amiram Eldar_, Sep 26 2022 *)

%o (Magma) hoax:=func<n| not IsPrime(n) and (&+Intseq(n, 10) eq &+[ &+Intseq(p, 10): p in PrimeDivisors(n)])>; a:=[]; for n in [0..33] do k:=1; while #[d:d in Set(Divisors(k)) diff {1}|hoax(d)] ne n do k:=k+1; end while; Append(~a,k); end for; a;

%Y Cf. A019506.

%K nonn,base

%O 0,2

%A _Marius A. Burtea_, Sep 20 2022