login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357034
a(n) is the smallest number with exactly n divisors that are hoax numbers (A019506).
0
1, 22, 308, 638, 3696, 4212, 18480, 26400, 55080, 52800, 73920, 108108, 220320, 216216, 275400, 324324, 432432, 550800, 734400, 1908000, 1144800, 1101600, 1377000, 1652400, 3027024, 2203200, 4039200, 2754000, 3304800, 5724000, 6528600, 9180000, 8586000, 5508000
OFFSET
0,2
EXAMPLE
1 has no divisors in A019506, so a(0) = 1;
22 has divisors 1, 2, 11, 22, and 22 = A019506(1), so a(1) = 22.
308 has divisors 1, 2, 4, 7, 11, 14, 22, 28, 44, 77, 154, 308 and 22 = A019506(1), 308 = A019506(14), so a(2) = 308.
MATHEMATICA
digitSum[n_] := Total @ IntegerDigits[n]; hoaxQ[n_] := CompositeQ[n] && Total[digitSum /@ FactorInteger[n][[;; , 1]]] == digitSum[n]; f[n_] := DivisorSum[n, 1 &, hoaxQ[#] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[10, 10^5] (* Amiram Eldar, Sep 26 2022 *)
PROG
(Magma) hoax:=func<n| not IsPrime(n) and (&+Intseq(n, 10) eq &+[ &+Intseq(p, 10): p in PrimeDivisors(n)])>; a:=[]; for n in [0..33] do k:=1; while #[d:d in Set(Divisors(k)) diff {1}|hoax(d)] ne n do k:=k+1; end while; Append(~a, k); end for; a;
CROSSREFS
Cf. A019506.
Sequence in context: A028109 A003468 A120051 * A041928 A028054 A100789
KEYWORD
nonn,base
AUTHOR
Marius A. Burtea, Sep 20 2022
STATUS
approved