login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357019
a(n) is the largest possible x in n = x^2 - x*y + y^2 with integers x > y >= 0, or 0 if n cannot be expressed in this form.
1
0, 1, 0, 2, 2, 0, 0, 3, 0, 3, 0, 0, 4, 4, 0, 0, 4, 0, 0, 5, 0, 5, 0, 0, 0, 5, 0, 6, 6, 0, 0, 6, 0, 0, 0, 0, 6, 7, 0, 7, 0, 0, 0, 7, 0, 0, 0, 0, 8, 8, 0, 0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 9, 0, 9, 8, 0, 0, 9, 0, 0, 0, 0, 0, 9, 0, 10, 10, 0, 0, 10, 0, 9, 0, 0, 10, 0
OFFSET
0,4
PROG
(PARI) dloesch(n) = {my(L=List()); foreach([-1, 1], qs, my (D=qfbsolve(Qfb(1, qs, 1), factor(n), 3), dnp=#D); for (k=1, dnp, if(D[k][1]^2+D[k][2]^2-abs(D[k][1]*D[k][2])==n, listput (L, [abs(D[k][1]), abs(D[k][2])])))); Set(L)};
for (k=1, 85, my(D=dloesch(k), d=#D, m=0); for (j=1, d, m=max(m, D[j][1])); print1(m, ", "))
(Python)
from sympy.abc import x, y
from sympy.solvers.diophantine.diophantine import diop_quadratic
def A357019(n): return max((a for a, b in diop_quadratic(x*(x-y)+y**2-n)), default=0) # Chai Wah Wu, Sep 12 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Sep 10 2022
STATUS
approved