login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356897
Nonnegative numbers whose maximal tribonacci representation (A352103) ends in an odd number of 1's.
3
1, 5, 7, 8, 12, 18, 20, 21, 25, 27, 29, 31, 32, 36, 42, 44, 45, 49, 52, 56, 62, 64, 65, 69, 71, 73, 75, 76, 80, 86, 88, 89, 93, 95, 99, 101, 102, 106, 108, 110, 112, 113, 117, 123, 125, 126, 130, 133, 137, 143, 145, 146, 150, 152, 154, 156, 157, 161, 167, 169
OFFSET
1,2
COMMENTS
Numbers k such that A356898(k) is odd.
The asymptotic density of this sequence is 1/(c+1) = 0.352201..., where c = 1.839286... (A058265) is the tribonacci constant.
LINKS
EXAMPLE
n a(n) A352103(n) A356898(n)
- ---- ---------- ----------
1 1 1 1
2 5 101 1
3 7 111 3
4 8 1001 1
5 12 1101 1
6 18 10101 1
7 20 10111 3
8 21 11001 1
9 25 11101 1
10 27 11111 5
MATHEMATICA
t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; f[v_] := Module[{m = Length[v], k}, k = m; While[v[[k]] == 1, k--]; m - k]; c[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, f[v[[i[[1, 1]] ;; -1]]], 10]]; Select[Range[0, 200], OddQ[c[#]] &]
CROSSREFS
Complement of A356896.
Similar sequences: A001950, A308198, A342050.
Sequence in context: A171420 A047384 A257772 * A314374 A066001 A320391
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Sep 03 2022
STATUS
approved