login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array, n >= 0, k >= 0, read by descending antidiagonals. A(n,k) = A022341(n)*2^k.
1

%I #8 Sep 07 2022 18:58:08

%S 1,2,5,4,10,9,8,20,18,17,16,40,36,34,21,32,80,72,68,42,33,64,160,144,

%T 136,84,66,37,128,320,288,272,168,132,74,41,256,640,576,544,336,264,

%U 148,82,65,512,1280,1152,1088,672,528,296,164,130,69,1024,2560,2304,2176,1344,1056,592,328,260,138,73

%N Square array, n >= 0, k >= 0, read by descending antidiagonals. A(n,k) = A022341(n)*2^k.

%C The nonzero Fibbinary numbers (A003714) arranged in rows where each successive term is twice the preceding term; a (transposed) Fibbinary equivalent of A054582.

%C Write the first term in each row as Sum_{i in S} 2^i, where S is a set of nonnegative integers, then n = Sum_{i in S} F_i, where F_i is the i-th Fibonacci number, A000045(i).

%C More generally, if the terms are represented in binary, and the binary weighting of the digits (2^0, 2^1, 2^2, ...) is replaced with Fibonacci weighting (F_0, F_1, F_2, ...), we get the extended Wythoff array (A287870). If the weighting of the Zeckendorf representation is used (F_2, F_3, F_4, ...), we get the (unextended) Wythoff array (A035513).

%F A(n,0) = A022341(n), otherwise A(n,k) = 2*A(n,k-1).

%F A287870(n+1,k+1) = A356874(floor(A(n,k)/2)).

%F A035513(n+1,k+1) = A022290(A(n,k)).

%e Square array A(n,k) begins:

%e 1 2 4 8 16 32 64 128 ...

%e 5 10 20 40 80 160 320 640 ...

%e 9 18 36 72 144 288 576 1152 ...

%e 17 34 68 136 272 544 1088 2176 ...

%e 21 42 84 168 336 672 1344 2688 ...

%e 33 66 132 264 528 1056 2112 4224 ...

%e 37 74 148 296 592 1184 2368 4736 ...

%e 41 82 164 328 656 1312 2624 5248 ...

%e 65 130 260 520 1040 2080 4160 8320 ...

%e 69 138 276 552 1104 2208 4416 8832 ...

%e ...

%e The defining characteristic of a Fibbinary number is that its binary representation does not have a 1 followed by another 1. Shown in binary the array begins:

%e 1 10 100 1000 ...

%e 101 1010 10100 101000 ...

%e 1001 10010 100100 1001000 ...

%e 10001 100010 1000100 10001000 ...

%e 10101 101010 1010100 10101000 ...

%e ...

%Y See the comments for the relationship to: A000045, A003714, A035513, A054582, A287870.

%Y See the formula section for the relationship to: A022290, A022341, A356874.

%K nonn,easy,tabl

%O 0,2

%A _Peter Munn_, Sep 02 2022