login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = product of prohibited prime factors of A354790(n).
2

%I #11 Sep 08 2022 01:34:57

%S 1,1,2,6,15,105,385,2310,6006,102102,277134,6374082,16804398,

%T 520936338,3038795305,66853496710,190275336790,7420738134810,

%U 17897074325130,769574195980590,1903683537425670,100895227483560510,258818192240437830,15787909726666707630,36475515575402393490

%N a(n) = product of prohibited prime factors of A354790(n).

%C Let s(n) = A354790(n), a squarefree number by definition. Prime p | s(n) implies p does not divide s(n+j), 1 <= j <= n. Therefore a(n) is the product of primes p that cannot divide s(n). a(n) = product of distinct primes that divide a(j) for floor((n+1)/2) <= j <= n-1. (After _N. J. A. Sloane_ in A355057.)

%C Analogous to A355057.

%H Michael De Vlieger, <a href="/A356803/b356803.txt">Table of n, a(n) for n = 1..585</a>

%H Michael De Vlieger, <a href="/A356803/a356803.png">Annotated plot of prime p | m at (n, pi(p))</a> for m = a(n) in blue and A354790(n) in red and n = 1..80.

%H Michael De Vlieger, <a href="/A356803/a356803_1.png">Plot of prime p | m at (n, pi(p))</a> for m = a(n) in cyan and A354790(n) in red and n = 1..1024.

%F a(n) = a(n-1) * s(n-1) / s((n-1)/2), where the last operation is only carried out iff (n-1)/2 is an integer.

%e a(1) = 1;

%e a(2) = 1 since s(1) = 1, and (2-1)/2 is not an integer;

%e a(3) = a(2) * s(2) / s((3-1)/2) = 1 * 2 / 1 = 2;

%e a(4) = a(3) * s(3) = 2 * 3 = 6;

%e a(5) = a(4) * s(4) / s((5-1)/2) = 6 * 5 / 2 = 15;

%e a(6) = a(5) * s(5) = 15 * 7 = 105;

%e a(7) = a(6) * s(6) / s((7-1)/2) = 105 * 11 / 3 = 385; etc.

%t Block[{s = Import["https://oeis.org/A354790/b354790.txt", "Data"][[1 ;; 26, -1]], ww, m = 1, t, w = 3, k = 3}, Reap[Do[m *= Times @@ FactorInteger[s[[If[# == 0, 1, #] &[i - 1]]]][[All, 1]]; If[IntegerQ[#] && # > 0, m /= Times @@ FactorInteger[s[[#]]][[All, 1]]] &[(i - 1)/2]; Sow[m], {i, Length[s] - 1}]][[-1, -1]] ]

%Y Cf. A354790, A355057.

%K nonn

%O 1,3

%A _Michael De Vlieger_, Sep 06 2022