login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A356708 Number of integral solutions to Mordell's equation y^2 = x^3 + n^3 with y nonnegative. 7
3, 4, 1, 3, 1, 1, 2, 5, 3, 3, 2, 1, 1, 3, 1, 3, 1, 4, 1, 1, 2, 2, 2, 1, 3, 2, 1, 3, 1, 1, 1, 5, 3, 2, 2, 3, 3, 2, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 3, 4, 1, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 2, 3, 9, 1, 1, 1, 1, 3, 2, 5, 1, 2, 1, 1, 1, 5, 1, 1, 3, 1, 1, 3, 1, 2, 1, 3, 1, 3, 3, 2, 1, 1, 2, 1, 1, 4, 2, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Equivalently, number of different values of x in the integral solutions to the Mordell's equation y^2 = x^3 + n^3.
LINKS
FORMULA
a(n) = (A081119(n^3)+1)/2 = A134108(n^3) = (A356706(n)+1)/2 = A356707(n)+1.
EXAMPLE
a(2) = 4 because the solutions to y^2 = x^3 + 2^3 with y >= 0 are (-2,0), (1,3), (2,4), and (46,312).
PROG
(SageMath) [(len(EllipticCurve(QQ, [0, n^3]).integral_points(both_signs=True))+1)/2 for n in range(1, 61)] # Lucas A. Brown, Sep 04 2022
CROSSREFS
Indices of 1, 2, 3, and 4: A356709, A356710, A356711, A356712.
Sequence in context: A021297 A124909 A348354 * A281098 A090279 A101667
KEYWORD
nonn,hard
AUTHOR
Jianing Song, Aug 23 2022
EXTENSIONS
a(21) corrected and a(22)-a(60) by Lucas A. Brown, Sep 04 2022
a(61)-a(100) from Max Alekseyev, Jun 01 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 15 00:37 EDT 2024. Contains 374323 sequences. (Running on oeis4.)