login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356363
a(n) = Sum_{k=0..floor(n/3)} n^k * Stirling2(n,3*k).
2
1, 0, 0, 3, 24, 125, 576, 3136, 24752, 242280, 2421000, 23568743, 230156136, 2370756505, 26664718080, 326641069815, 4243004068192, 57065900282730, 787656999701016, 11193821784313606, 165023822310642520, 2535785869709189307, 40583218821499596176
OFFSET
0,4
LINKS
Eric Weisstein's MathWorld, Bell Polynomial.
FORMULA
Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + exp(w*x) + exp(w^2*x))/3 = 1 + x^3/3! + x^6/6! + ... . a(n) = n! * [x^n] F(n^(1/3) * (exp(x)-1)).
a(n) = ( Bell_n(n^(1/3)) + Bell_n(n^(1/3)*w) + Bell_n(n^(1/3)*w^2) )/3, where Bell_n(x) is n-th Bell polynomial.
PROG
(PARI) a(n) = sum(k=0, n\3, n^k*stirling(n, 3*k, 2));
(PARI) a(n) = n!*polcoef(sum(k=0, n\3, n^k*(exp(x+x*O(x^n))-1)^(3*k)/(3*k)!), n);
(PARI) Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
a(n) = my(v=n^(1/3), w=(-1+sqrt(3)*I)/2); round(Bell_poly(n, v)+Bell_poly(n, v*w)+Bell_poly(n, v*w^2))/3;
CROSSREFS
Cf. A357782.
Sequence in context: A319097 A326789 A305543 * A183900 A001089 A359884
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 16 2022
STATUS
approved