OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Pochhammer Symbol.
FORMULA
Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + exp(w*x) + exp(w^2*x))/3 = 1 + x^3/3! + x^6/6! + ... . a(n) = n! * [x^n] F(n^(1/3) * log(1+x)).
a(n) = (-1)^n * ( (-n^(1/3))_n + (-n^(1/3)*w)_n + (-n^(1/3)*w^2)_n )/3, where (x)_n is the Pochhammer symbol.
PROG
(PARI) a(n) = sum(k=0, n\3, n^k*stirling(n, 3*k, 1));
(PARI) a(n) = n!*polcoef(sum(k=0, n\3, n^k*log(1+x+x*O(x^n))^(3*k)/(3*k)!), n);
(PARI) Pochhammer(x, n) = prod(k=0, n-1, x+k);
a(n) = my(v=n^(1/3), w=(-1+sqrt(3)*I)/2); (-1)^n*round(Pochhammer(-v, n)+Pochhammer(-v*w, n)+Pochhammer(-v*w^2, n))/3;
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 16 2022
STATUS
approved