login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356199
a(n) = Sum_{k=0..n} (n*k+1)^(k-1) * Stirling2(n,k).
1
1, 1, 6, 122, 5991, 556152, 84245291, 18956006323, 5940695613628, 2474958812797662, 1323229303771318595, 883245295259143164922, 719968321620942410875645, 703829776430361739799683993, 812798413118207226439408790038, 1094718407894086754989907938078190
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} (n*k+1)^(k-1) * Stirling2(n,k).
a(n) = [x^n] Sum_{k>=0} (n*k+1)^(k-1) * x^k/Product_{j=1..k} (1 - j*x).
a(n) = n! * [x^n] 1/exp(LambertW((1 - exp(x))*n)/n) for n > 0, a(0) = 1.
a(n) ~ exp(exp(-1)/2) * n^(2*n - 2). - Vaclav Kotesovec, Aug 07 2022
MAPLE
b:= proc(n, k, m) option remember; `if`(n=0,
(k*m+1)^(m-1), m*b(n-1, k, m)+b(n-1, k, m+1))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..19);
MATHEMATICA
b[n_, k_, m_] := b[n, k, m] = If[n == 0,
(k*m+1)^(m-1), m*b[n-1, k, m] + b[n-1, k, m+1]];
a[n_] := b[n, n, 0];
Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Feb 14 2023, after Alois P. Heinz *)
PROG
(PARI) a(n) = sum(k=0, n, (n*k+1)^(k-1) * stirling(n, k, 2)); \\ Michel Marcus, Aug 04 2022
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 29 2022
STATUS
approved