login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the smallest number that has exactly n odious divisors (A000069).
5

%I #31 Oct 31 2022 05:55:32

%S 1,2,4,8,16,28,64,56,84,112,1024,168,4096,448,336,728,36309,672,57057,

%T 1456,1344,7168,105105,2184,6384,24150,5376,5208,405405,4368,389025,

%U 11648,20020,72618,10416,8736,927675,114114,48300,24024,855855,17472,1426425,40040

%N a(n) is the smallest number that has exactly n odious divisors (A000069).

%C a(n) <= 2^(n-1) with equality for n = 1, 2, 3, 4, 5, 7, 11, 13 up to a(44).

%H Amiram Eldar, <a href="/A355968/b355968.txt">Table of n, a(n) for n = 1..100</a>

%e a(6) = 28 since 28 has 6 divisors {1, 2, 4, 7, 14, 28} that have all an odd number of 1's in their binary expansion: 1, 10, 100, 111, 1110 and 11100; also, no positive integer smaller than 28 has six divisors that are odious.

%t f[n_] := DivisorSum[n, 1 &, OddQ[DigitCount[#, 2, 1]] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n]; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[20, 10^6] (* _Amiram Eldar_, Jul 21 2022 *)

%o (PARI) isod(n) = hammingweight(n) % 2; \\ A000069

%o a(n) = my(k=1); while (sumdiv(k, d, isod(d)) != n, k++); k; \\ _Michel Marcus_, Jul 22 2022

%o (Python)

%o from sympy import divisors

%o from itertools import count, islice

%o def c(n): return bin(n).count("1")&1

%o def f(n): return sum(1 for d in divisors(n, generator=True) if c(d))

%o def agen():

%o n, adict = 1, dict()

%o for k in count(1):

%o fk = f(k)

%o if fk not in adict: adict[fk] = k

%o while n in adict: yield adict[n]; n += 1

%o print(list(islice(agen(), 36))) # _Michael S. Branicky_, Jul 25 2022

%Y Cf. A000069, A093696, A227872, A330289, A355969.

%Y Similar sequences: A087997, A333456, A355303, A355699.

%K nonn,base

%O 1,2

%A _Bernard Schott_, Jul 21 2022

%E More terms from _Amiram Eldar_, Jul 21 2022