login
A355962
Primes p such that (p+7)^(p-1) == 1 (mod p^2).
6
2, 3, 229, 701, 31446553, 1016476523, 8918351831
OFFSET
1,1
COMMENTS
a(8) > 10^13 if it exists. - Jason Yuen, May 12 2024
Equivalently, primes p such that 7^p == p+7 (mod p^2), or Fermat quotient q_p(7) == 1/7 (mod p). - Max Alekseyev, Sep 16 2024
PROG
(PARI) forprime(p=1, , if(Mod(p+7, p^2)^(p-1)==1, print1(p, ", ")))
CROSSREFS
(p+k)^(p-1) == 1 (mod p^2): A355959 (k=2), A355960 (k=5), A355961 (k=6), A355963 (k=8), A355964 (k=9), A355965 (k=10).
Sequence in context: A037275 A142960 A117324 * A037059 A302398 A087313
KEYWORD
nonn,hard,more
AUTHOR
Felix Fröhlich, Jul 21 2022
EXTENSIONS
a(7) from Jason Yuen, May 12 2024
STATUS
approved